If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25a^2=20a
We move all terms to the left:
25a^2-(20a)=0
a = 25; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·25·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*25}=\frac{0}{50} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*25}=\frac{40}{50} =4/5 $
| X(3x^2+5)=25÷5 | | 11x/5=11 | | -5x-9=29 | | 5x=-3x+2x | | 7^(2x/7)=0 | | (w-0.444444444)(-0.666666667)=-0.8 | | W^2-w-28=0 | | 8+x=160 | | 4x-9x+4=10 | | (w+0.444444444)(-0.666666667)=-0.8 | | Y+7y+6=0 | | X(X+2)(2x-3)(2x-4)=0 | | 15/x=9/15 | | 5y-2+y=6+3y-5y | | -2.4x-10.35=1.75 | | 2(x+3)=7x-14 | | 6m+1=2m/4 | | x(2x+.4)^2-3.8904x10^-11=0 | | (5x+10)÷(2×+2)=12 | | 10x2-10x=0 | | P(z=2.45) | | 3.8904x10^-11=x(2x+.4)^2 | | 4x+4=-2x+10 | | 3x^2+x=44 | | -4x+6=-9x+31 | | 0=16t^2+15+5 | | (5x*5x)-28x=132 | | 3x+6+5x-5=54 | | (x-6)(x-5)(x+1)(x+2)=44 | | (n2+11n+25)÷(n+5)=0 | | 3(3x+6)+4(5x+3)=12(7) | | 25x^2-28x-132=0 |